$12^{2}_{95}$ - Minimal pinning sets
Pinning sets for 12^2_95
Minimal pinning semi-lattice
(y-axis: cardinality)
Pinning semi lattice for 12^2_95
Pinning data
Pinning number of this multiloop: 4
Total number of pinning sets: 384
of which optimal: 2
of which minimal: 2
The mean region-degree (mean-degree) of a pinning set is
on average over all pinning sets: 3.03466
on average over minimal pinning sets: 2.25
on average over optimal pinning sets: 2.25
Refined data for the minimal pinning sets
Pin label
Pin color
Regions
Cardinality
Degree sequence
Mean-degree
A (optimal)
•
{1, 3, 7, 9}
4
[2, 2, 2, 3]
2.25
B (optimal)
•
{1, 3, 7, 10}
4
[2, 2, 2, 3]
2.25
Data for pinning sets in each cardinal
Cardinality
Optimal pinning sets
Minimal suboptimal pinning sets
Nonminimal pinning sets
Averaged mean-degree
4
2
0
0
2.25
5
0
0
15
2.59
6
0
0
49
2.81
7
0
0
91
2.97
8
0
0
105
3.08
9
0
0
77
3.17
10
0
0
35
3.24
11
0
0
9
3.29
12
0
0
1
3.33
Total
2
0
382
Other information about this multiloop
Properties
Region degree sequence: [2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 6]
Minimal region degree: 2
Is multisimple: No
Combinatorial encoding data
Plantri embedding: [[1,2,2,3],[0,3,3,4],[0,5,6,0],[0,4,1,1],[1,3,7,5],[2,4,8,6],[2,5,9,7],[4,6,9,8],[5,7,9,9],[6,8,8,7]]
PD code (use to draw this multiloop with SnapPy): [[3,10,4,1],[2,20,3,11],[9,4,10,5],[1,12,2,11],[12,19,13,20],[5,13,6,14],[14,8,15,9],[15,18,16,19],[6,16,7,17],[17,7,18,8]]
Permutation representation (action on half-edges):
Vertex permutation $\sigma=$ (7,2,-8,-3)(18,5,-19,-6)(15,6,-16,-7)(1,8,-2,-9)(3,14,-4,-15)(4,17,-5,-18)(16,19,-17,-20)(13,20,-14,-11)(10,11,-1,-12)(12,9,-13,-10)
Edge permutation $\epsilon=$ (-1,1)(-2,2)(-3,3)(-4,4)(-5,5)(-6,6)(-7,7)(-8,8)(-9,9)(-10,10)(-11,11)(-12,12)(-13,13)(-14,14)(-15,15)(-16,16)(-17,17)(-18,18)(-19,19)(-20,20)
Face permutation $\varphi=(\sigma\epsilon)^{-1}=$ (-1,-9,12)(-2,7,-16,-20,13,9)(-3,-15,-7)(-4,-18,-6,15)(-5,18)(-8,1,11,-14,3)(-10,-12)(-11,10,-13)(-17,4,14,20)(-19,16,6)(2,8)(5,17,19)
Multiloop annotated with half-edges
12^2_95 annotated with half-edges